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Plasma and urinary metabolomic 
profiles of Down syndrome 
correlate with alteration of 
mitochondrial metabolism
Maria Caracausi1, Veronica Ghini2,3, Chiara Locatelli4, Martina Mericio5, Allison Piovesan1, 
Francesca Antonaros1, Maria Chiara Pelleri1, Lorenza Vitale1, Rosa Anna Vacca6, Federica 
Bedetti5, Maria Chiara Mimmi7, Claudio Luchinat2,8, Paola Turano2,8, Pierluigi Strippoli   1 & 
Guido Cocchi5

Down syndrome (DS) is caused by the presence of a supernumerary copy of the human chromosome 
21 (Hsa21) and is the most frequent genetic cause of intellectual disability (ID). Key traits of DS are the 
distinctive facies and cognitive impairment. We conducted for the first time an analysis of the Nuclear 
Magnetic Resonance (NMR)-detectable part of the metabolome in plasma and urine samples, studying 
67 subjects with DS and 29 normal subjects as controls selected among DS siblings. Multivariate 
analysis of the NMR metabolomic profiles showed a clear discrimination (up to of 80% accuracy) 
between the DS and the control groups. The univariate analysis of plasma and urine revealed a 
significant alteration for some interesting metabolites. Remarkably, most of the altered concentrations 
were consistent with the 3:2 gene dosage model, suggesting effects caused by the presence of three 
copies of Hsa21 rather than two: DS/normal ratio in plasma was 1.23 (pyruvate), 1.47 (succinate), 1.39 
(fumarate), 1.33 (lactate), 1.4 (formate). Several significantly altered metabolites are produced at the 
beginning or during the Krebs cycle. Accounting for sex, age and fasting state did not significantly affect 
the main result of both multivariate and univariate analysis.

Down syndrome (DS) (OMIM #190685) is the most frequent genetic cause of intellectual disability (ID), with an 
incidence of 1 in 691 live births1. The typical DS phenotype includes intellectual disability (ID), cardiovascular 
defects and craniofacial dysmorphisms2. ID, along with a typical facies (oblique eyes with epicantic folds and flat 
nasal bridge) and hypotonya at birth, is the most constant feature of DS and remains the main clinical problem1,3–5.  
It presents with variable severity, mainly affecting verbal skills and symbolic thought whereas relationship and 
affect skills are maintained6–8.

In 1959, Lejeune and Coll. discovered that DS is caused by the presence of full or partial chromosome 21 
(Hsa21) in three copies (trisomy 21) in the cells of the affected subjects9. To date, valid therapeutic strategies 
do not exist to improve the cognitive status of persons with DS. Pelleri and Coll., studying partial (segmental) 
trisomy 21 (PT21), demonstrated a highly restricted “Down syndrome critical region” (HR-DSCR) of only 34 kb 
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on distal 21q22.13 which is duplicated in all DS subjects while it is not duplicated in subjects without a diagnosis 
of DS10.

It is widely accepted that the Hsa21 gene product excess in a ratio of 3:2 when comparing trisomy 21 and 
normal cells is responsible for the typical features of DS2,11–13; however, a pathogenetic model linking specific 
structural and functional aspects of Hsa21 to ID in DS is not yet known.

In his studies, Lejeune hypothesized that DS could be considered a metabolic disease. In the conference talk 
“Vingt Ans Après”, he explained how the one carbon cycle could be involved in the pathogenesis of ID in sub-
jects who do not have a gross anatomic defect of the brain, and he asserted: “the goal is to figure out where a link 
between mental deficiency and trisomy 21 should be sought”14.

To explain his thoughts, he compared the genotype to an orchestra in “concert”: trisomy 21 is dis-concerting15. 
That means that the chemical bases of ID in these subjects are not coordinated. Through a careful cytological 
and biochemical analysis, it was demonstrated that some enzymes with increased activities are encoded by genes 
located on Hsa21, but also by genes located on the other chromosomes. For example, superoxide dismutase 1 
(SOD1) activity, which is increased by 1.5 times in trisomy 21 children, belongs to the first group, while glu-
tathione peroxidase (GPX1), which is also increased, belongs to the second one15.

In this work, we performed for the first time a metabolomic analysis of plasma and urine from Down syn-
drome and control subjects in order to give some insight into the metabolic processes possibly changed in DS 
as a result of gene imbalance. Metabolomics is a fairly recent discipline focusing on comprehensive analysis of 
the metabolites, in a biological system16. It studies metabolites, small molecules, end products of the cellular 
processes, which are enclosed in the term “metabolome”17. The major challenge of metabolomics is to analyze 
the highest number of endogenous metabolites as possible in a more accurate way16. The metabolic profile could 
be considered an instantaneous “snapshot” of the cell physiology. Indeed, metabolomics is giving important out-
comes in the clinical area, especially in identifying biomarkers or in defining disease pathophysiology18,19. Any of 
these profiles provide information that cannot be obtained directly from the genotype, gene expression profiles, 
or even from the proteome (the set of all the proteins expressed by the genome) of an individual19.

Blood serum, plasma and urine are the biological fluids generally used to examine the alterations of metabolite 
levels. The two main methods used to perform metabolomic analysis are: nuclear magnetic resonance (NMR) 
spectroscopy and mass spectrometry (MS) coupled with separation techniques20,21. NMR, although characterized 
by a lower sensitivity than MS, results to be a very appropriate platform because it is highly reproducible, quanti-
tative, and requires minimal sample manipulation.

The aim of this work is to verify the hypothesis that specific metabolic alterations may be detected in biological 
fluids of subjects with DS. To model systematic alterations of metabolites in subjects with DS, we chose to ana-
lyze plasma and urine samples. Untargeted 1H-NMR has been used to measure the NMR-detectable part of the 
metabolome in these biological fluids in both subjects with DS and healthy control subjects recruited among DS 
normal siblings. Multivariate statistical analysis was performed to evaluate the discrimination accuracy between 
DS and controls on the basis of their NMR profiles. Univariate analysis was performed to identify metabolites that 
have significantly different concentrations in DS and control groups. All significant results have been discussed in 
terms of genomics and of biochemistry.

Results
Study Design.  The main features of the analyzed cohorts and collected samples are described in the Materials 
and Methods section and summarized in Table 1. Given that in the pediatric age it is not always possible to collect 
all sample at a fasting state, to exclude the possibility that breakfast could have altered the results if patients were 
examined later in the morning, we performed multivariate and univariate analysis for two groups of subjects: the 
“all” groups include fasting and non-fasting subjects, and the “fasting” groups.

It was not possible to obtain results for both plasma and urine from all enrolled subjects (Table 1) due to 
different problems at the moment of collection, sample treatment or sample analysis. This led to a reduced num-
ber of data points in comparison to the total of enrolled subjects. Nevertheless, the final sample size allowed 
a statistical power of 0.86 for plasma analysis and 0.83 for urine analysis (software G*Power, estimation for 
Wilcoxon-Mann-Whitney test, two tails, effect size d = 0.8, α = 0.05). In addition, this led to a non-specular 
representation of subjects with DS and their siblings in the DS and control groups, respectively, although some 
overlap was conserved (3 siblings of 3 DS subjects for the analysis of plasma, and 17 siblings of 13 DS subjects for 
the analysis of urine).

Plasma Urine Subjects Overlap

DS 41 (M = 23, F = 18) 51 (M = 29, F = 22) 67 (M = 38, F = 29) 25 (M = 14, F = 11)

CTRL 25 (M = 12, F = 13) 20 (M = 11, F = 09) 29 (M = 14, F = 15) 16 (M = 09, F = 07)

Fasting DS 25 (M = 12, F = 13) 26 (M = 13, F = 13) 37 (M = 18, F = 19) 14 (M = 07, F = 07)

Fasting CTRL 21 (M = 09, F = 12) 14 (M = 07, F = 07) 22 (M = 10, F = 12) 13 (M = 06, F = 07)

Table 1.  Number of DS and CTRL (n° of male and female subjects of DS and CTRL). Overlap = subjects on 
whom both plasma and urine withdrawals were performed. In the DS and CTRL groups there were samples 
from 3 siblings of 3 subjects with DS for plasma analysis and from 17 siblings of 13 subjects with DS for urine 
analysis.
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Plasma Metabolomic Analysis.  PLS-CA (Partial Least Squares-Canonical Analysis) analysis of all the 
plasma samples was able to discriminate DS and CTRL (Control) groups with discrimination accuracy of 79.1% 
(95% confidence interval (CI), 78.6–79.6%, p-value = 0.01) in 1Dpresat CPMG (Carr-Purcell-Meiboom-Gill) 
spectra (Fig. 1A) and of 83.4% (95% CI, 83.0–83.8%, p-value = 0.01) in 1Dpresat NOESY (Nuclear Overhauser 
Effect Spectroscopy) spectra (Fig. 1B). The fasting group showed discrimination accuracies of 81.5% (95% CI, 
80.9–82.0%, p-value = 0.01) (Fig. 1C) and 87.1% (95% CI, 86.7–87.6%, p-value = 0.01) (Fig. 1D), respectively.

When subjects were grouped by sex, PLS-CA was able to discriminate DS and CTRL in the total female groups 
with an accuracy of 73.6% (95% CI, 72.9–74.3%, p-value = 0.02) in 1Dpresat CPMG spectra (Supplementary 
Figure 1A) and of 77.2% (95% CI, 76.5–77.9%, p-value = 0.01) in 1Dpresat NOESY spectra (Supplementary 
Figure 1B); in the total male groups the discrimination accuracies were 75.4% (95% CI, 74.7–76.1%, 
p-value = 0.01) (Supplementary Figure 1C) and 84.7% (95% CI, 84.1–85.32%, p-value = 0.01) (Supplementary 
Figure 1D), respectively.

A random sampling of 25 DS and 25 control subjects, repeated 50 times, still highlighted a good discrimina-
tion (80%) between DS and controls, excluding that the statistical significant difference of the mean age between 
the two groups may have affected the main results.

Regarding univariate analysis, the signals of 33 metabolites were unambiguously assigned (Supplementary 
Table S1) and integrated in 1H-NMR spectra of plasma. They are listed in Table 2 (all) and 3 (fasting). When 
all subjects were considered irrespectively of the fasting state, acetate, acetoacetate, acetone, creatine, formate, 
L-glutamine, glycerol, pyruvate, succinate and Unk3 (an unknown metabolite, Supplementary Figure S2) were 
significantly increased in DS plasma with a DS/CTRL ratio > 1; instead, lysine and tyrosine were significantly 
reduced in DS with a DS/CTRL ratio < 1 (Table 2). From the 1D spectral patterns, Unk3 appears to give rise to a 
single detectable signal at 3.94 ppm, which makes the use of 2D approaches useless for its assignment.

When fasting subjects were selected, the same metabolites were also found to be significantly increased or 
decreased in DS, with the exception of acetoacetate and lysine, which resulted not significantly different (Table 3). 
To evaluate the presence of confounding factors like age and sex, the metabolites which resulted significant in 
the univariate statistical analysis were tested with univariate and multivariate logistic regression (Supplementary 
Table S2).

Urine Metabolomic Analysis.  PLS-CA analysis of all the Probabilistic Quotient Normalization 
(PQN)-normalized urine spectra was able to discriminate DS and CTRL groups with an accuracy of 75.9% (95% 
CI, 75.5–76.2%, p-value = 0.01) (Fig. 2A). The fasting group shows a discrimination accuracy of 74.3% (95% CI, 
73.7–74.8%, p-value = 0.01) (Fig. 2B).

When subjects were grouped by sex, PLS-CA was able to discriminate by 1Dpresat NOESY spectra DS and 
CTRL in the total female groups with an accuracy of 75.6% (95% CI, 74.9–76.2%, p-value = 0.04) (Supplementary 
Figure 3A) while in the total male groups the discrimination accuracy was 77.3% (95% CI, 76.6–77.9%, 
p-value = 0.04) (Supplementary Figure 3B).

A casual sampling of 20 DS and 20 control subjects from the total groups, repeated 50 times, still highlighted 
a good discrimination (71.4%) of DS vs controls, excluding that the statistical (but not clinical) significant differ-
ence of the mean age between the two groups may have affected the main results.

Regarding univariate analysis, the signals of 30 metabolites were unambiguously assigned (Supplementary 
Table S3) and integrated in 1H-NMR spectra of urine. They are listed in Table 4 (all) and 5 (fasting). When all sub-
jects were considered irrespectively of the fasting state, phenylacetylglycine, trimethylamine-N-oxide (TMAO)  
and tyrosine were significantly increased in DS with a DS/CTRL ratio > 1; instead, glycine was reduced in DS with 
a DS/CTRL ratio < 1 (Table 4).

When fasting subjects were selected, ethanolamine, glutamate + glutamine and phenylacetylglycine were sig-
nificantly increased in DS with a DS/CTRL ratio > 1; instead, leucine was significantly reduced in DS with a DS/
CTRL ratio < 1 (Table 5).

Genomic Analysis.  We performed an analysis to correlate the metabolites we found altered in DS, the 
enzymes of the metabolic pathways related to these metabolites and the genomic location of the corresponding 
genes. The results are shown in Supplementary Table S4.

Discussion
In this work, we have conducted for the first time a systematic analysis of the NMR-detectable part of the metab-
olome in subjects with DS and normal controls recruited among their siblings. Theories about DS pathogenesis, 
in particular concerning ID, have considered different aspects of the data derived from different research themes, 
focusing on neuronal proliferation, neurotransmission modulation and oxidative stress as possible main mecha-
nisms impaired in DS. The metabolic hypothesis was presented mainly by J. Lejeune in the 70s, although related 
systematic investigation has not yet been performed.

To date no report has been published on the metabolomic analysis in DS, although several studies, discussed 
below, have underlined alterations in single compounds in blood, urine or cells obtained from DS subjects com-
pared to normal subjects suggesting that specific alterations of metabolic pathways could play a critical role in the 
pathogenesis of DS14.

Over time several alterations on metabolite concentrations have been described in the blood of DS in 
comparison with control subjects: i) increased levels of phenylalanine and tyrosine in blood serum following 
1-phenylalanine load and due to lower hydroxylation rate of phenylalanine22; ii) lower plasma levels of free histi-
dine, lysine, tyrosine, phenylalanine, leucine, isoleucine and tryptophan23; iii) increased plasma concentrations of 
leucine, isoleucine, cysteine and phenylalanine at an age vulnerable to Alzheimer changes24; iv) decreased plasma 
concentration of serine at any age, possibly due to a dosage effect of the gene for cystathionine beta synthase 
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Figure 1.  PLS-CA analysis of plasma samples. Score plots, PC1 vs PC2, and corresponding confusion matrices. 
In the score plot, each dot represents a different plasma sample. Green dots: DS samples; purple dots: healthy 
controls. All samples (DS, n = 41; CTRL, n = 25). (A) 1Dpresat CPMG spectra; discrimination accuracy: 79.1% 
(95% CI, 78.6–79.6%); sensitivity: 82.0% (95% CI, 81.3–82.4%); specificity: 75.0% (95% CI, 74.5–78.9%). (B) 
1Dpresat NOESY spectra; discrimination accuracy: 83.4% (95% CI, 83.0–83.8%); sensitivity: 85.7% (95% 
CI, 85.2–86.2%); specificity: 80.0% (95% CI, 79.0–80.3%). Samples from fasting subjects (DS, n = 25; CTRL, 
n = 21). (C) 1Dpresat CPMG spectra; discrimination accuracy: 81.5% (95% CI, 80.9–82.0%); sensitivity: 
83.9% (95% CI, 83.2–84.6%); specificity: 78.6% (95% CI, 77.8–79.5%). (D) and 1Dpresat NOESY spectra; 
discrimination accuracy: 87.1% (95% CI, 86.7–87.6%); sensitivity: 90.3% (95% CI, 89.8–90.9%); specificity: 
83.3% (95% CI, 82.5–84.1%).
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(CSB), located on Hsa2125; v) increased plasma lysine concentration in patients above 10 years old, possibly due to 
premature aging25. More recently, concentrations of metabolites related to the methylation cycle such as cysteine, 
cystathionine, choline and dimethylglycine concentrations were found to be significantly elevated in DS plasma 
by MS analysis26, as well as S-adenosylhomocysteine and S-adenosylmethionine plasma level that however were 
found to be decreased in a previous report27. Discrepancies found in the results for some metabolite dosages could 
be due to the use of different methods or to differences in the investigated populations26.

Although it has been proposed that oxidative stress has a main role in the pathogenesis of DS, urinary bio-
markers of oxidative stress have not been studied in this condition. A urine tyrosyl radical produced from the oxi-
dation of L-tyrosine by the myeloperoxidase-H2O2 system of macrophages and neutrophilis28, has been proposed 
as an oxidative stress biomarker in hypothyroid DS children29.

Metabolomic studies were also conducted on amniotic fluid samples from fetuses with DS compared with 
those of non-syndromic fetuses by MS analysis showing an elevation of phenylpyruvate that inhibits the metabo-
lism of tetrahydrobiopterin30; decreased levels of glycine and glutamate, involved in the neurotransmission pro-
cesses31, and an increased level of glutamine were also measured by high-performance liquid chromatography 
(HPLC).

The recent availability of powerful techniques opens the way to investigate a large number of metabolites in 
biological fluids. This allows the measurement of the concentration of specific metabolites of interest by analyzing 

Metabolites
DS 
(median)

CTRL 
(median) DS/CTRL p pFDR Cliff ’s delta

2-Hydroxybutyrate 290.3 357.0 0.81 0.609 0.687 Negligible

3-Hydroxybutyrate 90.4 96.0 0.94 0.793 0.816 Negligible

Acetate 188.9 140.5 1.34* 0.02 0.063 Medium

Acetoacetate 77.4 44.7 1.73* 0.018 0.063 Medium

Acetone 92.8 72.5 1.28* 0.011 0.042 Medium

Alanine 1047.9 1071.4 0.98 0.713 0.78 Negligible

Citrate 111.7 95.4 1.17 0.086 0.167 Small

Creatine 146.7 78.7 1.86 0.001 0.008 Medium

Creatinine 127.9 147.0 0.87 0.101 0.178 Small

Formate 43.9 31.4 1.4* 0.002 0.01 Medium

Fumarate 2.9 2.1 1.39* 0.107 0.179 Small

Glucose 2390.5 2479.0 0.96 0.074 0.162 Small

Glutamate 93.7 77.9 1.2 0.053 0.124 Small

Glutamine 216.8 195.1 1.11 0.008 0.036 Medium

Glycerol 81.7 53.4 1.53* 0.008 0.036 Medium

Glycine 505.8 502.4 1.01 0.896 0.896 Negligible

Histidine 92.6 98.9 0.94 0.247 0.375 Small

Isoleucine 110.0 113.2 0.97 0.311 0.454 Small

Lactate 769.8 580.4 1.33* 0.096 0.177 Small

Lactate + Threonine 3912.7 2906.4 1.35* 0.05 0.124 Small

Leucine 357.3 345.9 1.03 0.528 0.661 Negligible

Lysine 56.2 67.7 0.83 0.048 0.124 Small

Mannose 19.9 20.2 0.98 0.609 0.687 Negligible

Methionine 203.0 177.4 1.14 0.083 0.167 Small

Phenylalanine 121.0 123.7 0.98 0.743 0.788 Negligible

Pyruvate 502.2 407.1 1.23 0.001 0.007 Large

Succinate 21.5 14.6 1.47* 0.0001 0.0008 Large

Threonine 34.9 39.1 0.89 0.183 0.291 Small

Tyrosine 120.4 135.7 0.89 0.021 0.063 Medium

Unk1 46.6 51.5 0.91 0.503 0.652 Negligible

Unk2 19.6 15.5 1.26 0.337 0.472 Negligible

Unk3 190.8 116.5 1.64* 0.00001 0.0002 Large

Valine 834.4 878.2 0.95 0.423 0.569 Negligible

Table 2.  Univariate statistical analysis of plasma samples. List of metabolites whose concentration levels 
(in arbitrary units) have been determined in all samples (DS, n = 41; CTRL, n = 25). The p-value (p) of the 
univariate Wilcoxon-Mann-Whitney test for each metabolite is reported together with the p-value calculated 
after false discovery rate correction (pFDR). The effect size, using the Cliff ’s delta formulation, was also 
calculated to aid the identification of the meaningful signals giving an estimation of the magnitude of the 
separation between the different groups. Metabolites that show significant concentration differences in the 
two groups (p-value < 0.05) and/or show values in the interval next to 3:2 are reported in bold. *Values in the 
interval next to 3:2 (range 1.3–1.7).
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the spectra that are acquired for the whole complement of substances present in the fluid. On the other hand, 
using plasma and urine as the study models provides the possibility to visualize a balance of the metabolism at the 
level of the whole body. This makes sense in a genetic condition in which all cell types in all organs present with 
the same basic defect.

A first key result is the multivariate analysis of the data obtained from the plasma analysis, which has allowed 
us to discriminate with accuracies of the order of 80% changes in the NMR metabolomic profile between the DS 
and normal groups (Fig. 1).

The univariate analysis was based on 33 metabolites, whose NMR signals were identified and integrated in 
plasma spectra (Supplementary Table S1 and Tables 2 and 3). The results showed a systematic deviation for a sub-
group of the analyzed substances, including several metabolites involved in central metabolic processes related to 
mitochondrial metabolism such as the Krebs cycle, glycolysis and oxidative phosphorylation (OXPHOS) in DS.

Metabolomic analysis by NMR provides highly precise measures of the relative concentration of the metab-
olites possibly affected by the fasting state of the subject when collecting the investigated fluid. Remarkably, uni-
variate analysis revealed, even correcting for fasting state, a high level of specific change of metabolite in DS 
samples. Sex of the subjects was uniformly distributed in our groups (Table 1). Actually, also accounting for sex 
did not significantly affect the main result that plasma metabolome profile is different in DS vs normal subjects 
(Supplementary Figure S1). Regarding age, it is well-known that the risk of having a child with DS increase with 
the maternal age32. Therefore, children with DS are often younger than their siblings, constituting the control 
group. This led to a statistically significant difference between the mean age of the DS group vs control group 
(DS = 11.8 ± 7.1 and control = 16.8 ± 7.6, mean age ± SD). However, we have considered the critical advantage 
of having normal siblings of DS subjects as controls in the study of a genetic disease as the most similar genetic 
background is obtained between the two groups, suggesting that differences may have been due to the extra chro-
mosome in the affected siblings rather than a more generalized genetic difference. In addition, the casual mul-
tiple resampling of subgroups with different mean ages fully confirmed the difference between the two groups. 
Moreover, the significant metabolites identified by univariate statistical analysis (Tables 2 and 3) maintained their 
significance when adjusted for sex and age factors using a multivariate logistic regression model (Supplementary 
Table S2). Previous works have demonstrated that dosable enzymes whose genes are located on Hsa21 adhere to 
the 3:2 overexpression model expected in trisomy 2133–36. Therefore, we have chosen to consider a metabolite to 
be increased based on either a statistically significant difference or a biologically significant ratio of the DS/nor-
mal median near to 3:2 (1.5), although not statistically significant due to the distribution of the values. An anal-
ogous reasoning was applied to identify a decreased concentration. Interestingly, there was a basic scheme with 
two alternatives: a DS/normal ratio very near to 1, implying that the metabolite is not involved in an alteration 
of metabolism in DS, or a ratio very near to 3:2 or 2:3, consistent with the hypothesis that the pertinent kinetic 

Figure 2.  PLS-CA analysis of urine samples. 1Dpresat NOESY spectra. Score plot, PC1 vs PC2, and 
corresponding confusion matrices. In the score plot, each dot represents a different urine sample. Green dots: 
DS samples; purple dots: healthy controls. (A) All samples (DS, n = 51; CTRL, n = 20); discrimination accuracy: 
75.9% (95% CI, 75.5–76.2%); sensitivity: 85.6% (95% CI, 85.2–86.1%); specificity: 50.9% (95% CI, 49.9–51.8%). 
(B) Samples from fasting subjects (DS, n = 26; CTRL, n = 14); discrimination accuracy: 74.3% (95% CI, 73.7–
74.8%); sensitivity: 87.9% (95% CI, 87.3–88.5%); specificity: 48.9% (95% CI, 47.7–50.2%).
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reactions are actually proceeding at 150% of their normal velocity, with the consequent yield of 150% or 67% of 
the relative final product, depending on the structure of the pathway. It should be noted that several significantly 
increased metabolites with 3:2 ratio with respect to healthy control samples are metabolic products of enzymes 
whose genes, except for one, are not located on Hsa21 (see Supplementary Table S4) suggesting that the interac-
tions of Hsa21 gene products with other genes or proteins are potentially responsible for DS phenotypic varia-
tions. Interestingly, the metabolites we found increased are pyruvate, which connects Krebs cycle and glycolysis; 
fumarate and succinate intermediates of Krebs cycle; lactate, the end product of anaerobic glycolysis; formate, 
involved in mitochondrial one-carbon metabolism; and creatine, involved in the process of energy-dependent 
muscle activity. It is important to underline that the increment of pyruvate, succinate, formate and creatine 
are significant in terms of pFDR and classified as medium or large in terms of Cliff ’s delta (Tables 2 and 3).  
These alterations suggest a systematic imbalance of the Krebs cycle and different pathways of mitochondrial 
metabolism. Although several works have pointed out the role of mitochondria in DS37,38, no description of an 
alteration of the metabolites related to the Krebs cycle had been reported to date in DS. Krebs cycle is a central 
metabolic pathway for regulation of cell metabolism and energy homeostasis39. Accumulation of intermediate 
metabolites of Krebs cycle could suggest a systematic imbalance of this cycle in DS. Consistent with our results, 
impairment of certain enzymes of Krebs cycle (i.e. aconitase and NADP-linked isocitrate dehydrogenase) have 
been reported in the heart of DS fetuses and brain regions of subjects with DS40,41.

Metabolites
DS 
(median)

CTRL 
(median) DS/CTRL p pFDR Cliff ’s delta

2-Hydroxybutyrate 293.1 357.0 0.82 0.861 0.887 Negligible

3-Hydroxybutyrate 92.1 96.0 0.96 0.555 0.67 Negligible

Acetate 190.3 144.0 1.32* 0.028 0.109 Medium

Acetoacetate 71.4 53.9 1.32* 0.064 0.159 Small

Acetone 113.2 73.8 1.53* 0.013 0.078 Medium

Alanine 980.4 1087.0 0.9 0.219 0.349 Small

Citrate 106.5 93.3 1.14 0.09 0.203 Small

Creatine 127.4 78.3 1.63* 0.031 0.11 Medium

Creatinine 130.3 158.9 0.82 0.293 0.391 Small

Formate 41.1 31.4 1.31* 0.026 0.109 Medium

Fumarate 3.1 2.0 1.53* 0.098 0.203 Small

Glucose 2359.1 2471.1 0.95 0.094 0.203 Small

Glutamate 89.6 77.9 1.15 0.358 0.447 Small

Glutamine 208.3 195.1 1.07 0.046 0.148 Small

Glycerol 89.2 53.4 1.67* 0.025 0.109 Medium

Glycine 505.8 502.4 1.01 0.861 0.887 Negligible

Histidine 93.7 99.6 0.94 0.129 0.238 Small

Isoleucine 110.0 125.1 0.88 0.06 0.159 Small

Lactate 737.2 566.3 1.3* 0.188 0.313 Small

Lactate + Threonine 3850.7 2858.6 1.35* 0.141 0.246 Small

Leucine 361.3 380.5 0.95 0.273 0.391 Small

Lysine 58.9 67.7 0.87 0.113 0.22 Small

Mannose 20.0 20.7 0.97 0.662 0.742 Negligible

Methionine 198.2 177.6 1.12 0.052 0.151 Small

Phenylalanine 122.2 124.4 0.98 0.948 0.948 Negligible

Pyruvate 548.3 407.1 1.35* 0.01 0.072 Medium

Succinate 22.1 14.9 1.49* 0.0001 0.001 Large

Threonine 38.9 40.9 0.95 0.585 0.682 Negligible

Tyrosine 121.8 145.1 0.84 0.008 0.068 Medium

Unk1 53.4 53.7 0.99 0.678 0.742 Negligible

Unk2 20.5 14.1 1.45* 0.283 0.391 Small

Unk3 190.8 133.2 1.43* 0.001 0.008 Large

Valine 892.5 944.8 0.94 0.264 0.391 Small

Table 3.  Univariate statistical analysis of plasma samples (fasting subjects subset). List of metabolites whose 
concentration levels (in arbitrary units) have been determined in samples from fasting subjects (DS, n = 25; 
CTRL, n = 21). The p-value (p) of the univariate Wilcoxon-Mann-Whitney test for each metabolite is reported 
together with the p-value calculated after false discovery rate correction (pFDR). The effect size, using the Cliff ’s 
delta formulation, was also calculated to aid the identification of the meaningful signals giving an estimation of 
the magnitude of the separation between the different groups. Metabolites that show significant concentration 
differences in the two groups (p-value < 0.05) and/or show values in the interval next to 3:2 are reported in bold. 
*Values in the interval next to 3:2 (range 1.3–1.7).
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The increase of plasma lactate we found in DS samples is consistent with the increase of basal levels of lactate 
found in fibroblasts from DS patients42 and supports the hypothesis that in DS cells, in which the OXPHOS is 
impaired42,43, DS cells activate glycolysis for their energy demands. Consistently, also in another neurodevelop-
mental disease such as the autism spectrum disorder associated with mitochondrial metabolism impairment44, 
abnormal levels of metabolites associated with activation of glycolysis like serum lactate and pyruvate were 
found45. Very interesting and new data is the increase of plasma creatine in DS samples. Creatine is phosphoryl-
ated in mitochondria by ATP derived from oxidative phosphorylation and the phosphocreatine, subsequently 
exported outside mitochondria, used by the cytosolic creatine kinase to resupply ATP for muscle activity46. We 
can suppose that plasma accumulation of creatine, probably due to the OXPHOS impairment, could account for 
the muscle weakness, another typical DS phenotype.

Defective mitochondrial biogenesis has also been extensively described in DS37. Indeed, the overexpression 
of the Hsa21 gene NRIP1 (21q11.2–21q21.1) is known to impair the activity of the transcriptional coactiva-
tor PPARGC1A causing mitochondrial dysfunction reverted by the PPARGC1A expression inducer drug met-
formin47. Impairment of the methyl cycle has been actually documented and also affects mitochondrial methyl 
availability and glutathione levels in DS48. Finally, a work of Coppus and Coll.49 has confirmed some metabolic 
alterations in DS. By HLPC, they found, for example, a decrease of tyrosine in DS compared with controls. Here, 
we also observed decreased tyrosine levels (not significant in terms of pFDR but classified as medium in terms of 
Cliff ’s delta (Tables 2 and 3)) with a ratio DS/control = 0.87, which was near the 2:3 ratio. Tyrosine is a precursor 
of thyroid hormones, whose level is often decreased in DS, so it would be interesting to test the hypothesis of a 
correlation between tyrosine and thyroid hormones in subjects with DS. Our preliminary analysis failed to find 

Metabolites
DS 
(median)

CTRL 
(median) DS/CTRL p pFDR Cliff ’s delta

1-Methylnicotinamide 70.40 77.76 0.91 0.158 0.303 Small

2-Hydroxyisobutyricacid 475.71 466.07 1.02 0.424 0.601 Negligible

3-Hydroxyisovalericacid 580.32 664.61 0.87 0.127 0.287 Small

4-Hydroxyphenylacetate 751.67 717.87 1.05 0.47 0.639 Negligible

Acetone 183.95 151.38 1.22 0.072 0.287 Small

Alanine 619.34 764.43 0.81 0.127 0.287 Small

Allantoin 261.45 249.15 1.05 0.213 0.344 Small

Asparagine 230.67 230.47 1 0.687 0.79 Negligible

Citrate 2473.96 2223.93 1.11 0.697 0.79 Negligible

Creatine 1943.68 710.51 2.74 0.582 0.707 Negligible

Creatine + Creatinine 55388.33 66245.63 0.84 0.095 0.287 Small

Creatinine 33745.47 35848.97 0.94 0.203 0.344 Small

Dimethylamine 3221.94 3170.58 1.02 0.274 0.424 Small

Dimethylglycine 1468.8 1505.89 0.98 0.725 0.795 Negligible

Ethanolamine 611.43 557.99 1.1 0.169 0.303 Small

Formate 168.84 201.72 0.84 0.162 0.303 Small

Fumarate 23.03 24.19 0.95 0.292 0.431 Small

Glutamate + Glutamine 11171.06 10468.04 1.07 0.136 0.29 Small

Glycine 2376.48 3336.31 0.71** 0.023 0.153 Medium

Glycolate 1749.97 1595.02 1.1 0.764 0.812 Negligible

Hippurate 1759.98 2848.18 0.62** 0.123 0.287 Small

Isoleucine 16.84 12.89 1.31* 0.838 0.863 Negligible

Leucine 84.61 98.17 0.86 0.053 0.256 Small

Lysine 2692.58 2793.75 0.96 0.114 0.287 Small

Phenylacetylglycine 3291.89 2429.73 1.35* 0.02 0.153 Medium

Taurine 5402.05 5789.23 0.93 0.12 0.287 Small

Trigonelline 70.38 96.77 0.73** 0.109 0.287 Small

Trimethylamine-N-Oxide 6546.7 4502.19 1.45* 0.011 0.153 Medium

Tyrosine 927.51 786.09 1.18 0.02 0.153 Medium

Valine 77.15 82.48 0.94 0.913 0.913 Negligible

Table 4.  Univariate statistical analysis of urine samples. List of metabolites whose concentration levels (in 
arbitrary units) have been determined in all samples (DS, n = 51; CTRL, n = 20). The p-value (p) of the 
univariate Wilcoxon-Mann-Whitney test for each metabolite is reported together with the p-value calculated 
after false discovery rate correction (pFDR). The effect size, using the Cliff ’s delta formulation, was also calculated 
to aid the identification of the meaningful signals giving an estimation of the magnitude of the separation 
between the different groups. Metabolites that show significant concentration differences in the two groups 
(p-value < 0.05) and/or show values in the interval next to 3:2 or 2:3 are reported in bold. *Values in the interval 
next to 3:2 (range 1.3–1.7). **Values in the interval next to 2:3 (range 0.58–0.76).
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such a correlation when routine laboratory analysis data for thyroid hormone levels in the children investigated 
here were correlated to plasma tyrosine levels.

As far as the possible relationship between metabolomic profile in DS and ID are concerned, we used the 
“Lejeune machine”14 to identify which biochemical pathways presumably involved in ID were interested, accord-
ing to our and previously published data for plasma (Fig. 3).

The four sections of the machine, decades before current system biology diagrams, represent the critical con-
ditions for the nervous system to work: neuron proliferation (DNA “bases”), neurotransmission (“Mediateurs”), 
nerve fiber insulation (“Gaines”) and availability of energy (“Energie”). According to this scheme, our data sug-
gest that there is a key alteration in the production of energy. To cite J. Lejeune: “Even if the network is correct and 
the insulating system properly developed, genetic mistakes can prevent the function. Generally speaking, one gets 
the feeling that the machine is running but cannot develop its full power. Exactly like a motor to which the fuel is 
not provided in correct amount”; “One would believe that either the brain does not dispose of enough energy or 
that some toxic is impairing its ignition process”14.

At variance with blood, urine is a biofluid characterized by a large daily variability due to the effect of food/
beverage intake and a possible modulation of the urine metabolome by the circadian clock50. Dilution resulting 
by different hydration status of the donors was corrected by using PQN normalization. Nevertheless, usually, 
multiple collections of urine samples from the same individual are needed to extract the characteristic indi-
vidual phenotype from the urinary “metabolic” noise50–54. Here, it was possible to obtain a single urine sample 
per donor, still, some meaningful differences were detectable between control and DS subjects, which comple-
ment the results obtained on plasma. The discrimination between DS and control groups by multivariate analysis 

Metabolites
DS 
(median)

CTRL 
(median) DS/CTRL p pFDR Cliff ’s delta

1-Methylnicotinamide 90.79 77.76 1.17 0.66 0.778 Negligible

2-Hydroxyisobutyricacid 534.91 466.07 1.15 0.347 0.562 Small

3-Hydroxyisovalericacid 578.97 702.61 0.82 0.21 0.385 Small

4-Hydroxyphenylacetate 776.86 717.87 1.08 0.44 0.605 Small

Acetone 177.04 157.98 1.12 0.392 0.562 Small

Alanine 641.81 716.87 0.9 0.392 0.562 Small

Allantoin 259.48 253.01 1.03 0.361 0.562 Small

Asparagine 229.66 230.47 1 0.547 0.96 Negligible

Citrate 2955.7 2223.93 1.33* 0.104 0.38 Small

Creatine 1623.66 710.51 2.29 0.809 0.89 Negligible

Creatine + Creatinine 55526.11 67049.14 0.83 0.146 0.385 Small

Creatinine 34711.64 40183.87 0.86 0.376 0.562 Small

Dimethylamine 3337.22 3106.79 1.07 0.2 0.385 Small

Dimethylglycine 1444.82 1402.27 1.03 0.989 0.989 Negligible

Ethanolamine 622.5 552.55 1.13 0.045 0.294 Medium

Formate 185.57 202.01 0.92 0.19 0.385 Small

Fumarate 22.75 23.52 0.97 0.705 0.803 Negligible

Glutamate + Glutamine 11376.69 10271.45 1.11 0.018 0.197 Medium

Glycine 2416.04 3117.97 0.77 0.18 0.385 Small

Glycolate 1836.13 1455.26 1.26 0.585 0.742 Negligible

Hippurate 1550.73 2898.81 0.53 0.081 0.38 Medium

Isoleucine 19.45 12.83 1.52* 0.64 0.778 Negligible

Leucine 78.61 106.32 0.74** 0.003 0.042 Large

Lysine 2643.68 2768.05 0.96 0.104 0.38 Small

Phenylacetylglycine 2800.31 2413.39 1.16 0.029 0.237 Medium

Taurine 5190.12 6051.34 0.86 0.154 0.385 Small

Trigonelline 71.63 103.65 0.69** 0.138 0.385 Small

Trimethylamine-N-Oxide 6366.2 5559.22 1.15 0.21 0.385 Small

Tyrosine 891.47 801.66 1.11 0.076 0.38 Medium

Valine 79.51 83.21 0.96 0.967 0.989 Negligible

Table 5.  Univariate statistical analysis of urine samples (fasting subjects subset). List of metabolites whose 
concentration levels (in arbitrary units) have been determined in samples from fasting subjects (DS, n = 26; 
CTRL, n = 14). The p-value (p) of the univariate Wilcoxon-Mann-Whitney test for each metabolite is reported 
together with the p-value calculated after false discovery rate correction (pFDR). The effect size, using the Cliff ’s 
delta formulation, was also calculated to aid the identification of the meaningful signals giving an estimation of 
the magnitude of the separation between the different groups. Metabolites that show significant concentration 
differences in the two groups (p-value < 0.05) and/or show values in the interval next to 3:2 or 2:3 are reported 
in bold. *Values in the interval next to 3:2 (range 1.3–1.7). **Values in the interval next to 2:3 (range 0.58–0.76).
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appeared essentially unaffected by fasting state, sex or age (Fig. 2 and Supplementary Figure S3). This result is 
of particular interest because of the above-discussed fluctuation of metabolite concentrations in urine. A lower 
number of metabolites was found to be altered by univariate analysis (none significant in terms of pFDR, except 
for leucine in fasting subjects) still confirming that metabolites implied in key steps of the general metabolism are 
altered (Tables 4 and 5).

Higher levels of citrate have been previously reported in peripheral blood mononuclear cells and lymphoblas-
toid cells from children with DS55. Here, we found an increase of citrate in urine of fasting subjects with a ratio 
DS/control = 1.33, which was near the 3:2 ratio, although the differences in citrate levels between the two groups 
are not significant.

To verify if enzymes involved in pathways related to the metabolites that we have found to be significantly 
altered in DS are located on Hsa21, we have mapped the genomic location of these enzymes (Supplementary 
Table S4). The currently analyzed set revealed only one enzyme gene, FTCD, located on 21q22.3 and encod-
ing for the formimidoyltransferase cyclodeaminase. FTCD enzyme is involved in the most common inborn 
error of folate metabolism due to an autosomal recessive disorder causing a glutamate formiminotransferase 

Figure 3.  The “Lejeune Machine”, representing human metabolism as a mechanical machine, with highlighting 
of metabolites (gears) with an altered concentration in DS plasma. The original Figure is a drawing by Jérôme 
Lejeune and it has been obtained thanks to courtesy of Mme Birthe Lejeune and used with her kind permission. 
The drawing has been modified here by the authors by means of coloring. Red = increased (at p < 0.05 and/or 
with a 1.3–1.7 DS/CTRL ratio); orange = increased, although at p ≥ 0.05 and not within the 1.3–1.7 ratio range; 
blue = decreased (at p < 0.05 and/or with a 0.58–0.76 DS/ CTRL ratio); green = decreased, although at p ≥ 0.05 
and not within the 0.58–0.76 ratio range; yellow/violet = increased/decreased, according to literature data, 
respectively24–27,49. S-adenosylhomocysteine and S-adenosylmethionine plasma level were decreased according 
to Pogribna and Coll.27, and increased according to Obeid and Coll.26. The yellow gear above the “Krebs” gear 
represents cystathionine. Other explanations in the text.
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deficiency56. This enzyme catalyzes two reactions of the histidine metabolism, in particular the degradation of 
N-formimino-L-glutamic acid to form 5,10-methenyltetrahydrofolate, L-glutamate, and ammonia (KEGG path-
way 2.1.2.5, Supplementary Table S4). L-glutamate is one of the compounds having an increased level in DS urine 
of the fasting group subjects, not significant in terms of pFDR but classified as medium in terms of Cliff ’s delta 
(Table 5). Further study is needed in this regard by analyzing other metabolites. A possible explanation of map-
ping only one Hsa21 gene among those found by KEGG pathway database and listed in Supplementary Table S4 
could be that the alteration of an enzyme or regulatory gene on Hsa21 propagates its 3:2 effect on subsequent 
steps of the metabolic chain, thus affecting enzymes located on other chromosomes. From this point of view, a 
deep analysis of the recently described HR-DSCR, suspected to contain unknown fundamental genetic deter-
minants for ID in DS10, is recommended. Although the size of HR-DSCR is lower than the mean size of a single 
protein-coding gene57, this mean size is mainly due to introns whose size may also be extremely low58, and there 
is also the possibility that short non-coding or micro-RNA might be encoded in this currently “desertic” region. 
The deletion of a single copy of HR-DSCR from trisomic cultured cells via CRISPR/Cas959 could also allow the 
demonstration of phenotypic effects, and the isolation of effects on metabolism in DS due to HR-DSCR from the 
ones due to Hsa21 genes distant from this critical region.

Another interesting metabolite that, although not significant in terms of pFDR but classified as medium in 
terms of Cliff ’s delta, increases in urine is TMAO. This metabolite is not processed by enzymes produced by 
human genes but it has been hypothesized to play a role of the human microbiota. A literature analysis confirmed 
that TMAO is a gut-microbiota-dependent metabolite60, and several works also reveal that TMAO has a role in 
the onset of cardiovascular diseases61–63 and kidney diseases64–66. Biagi and Coll.67 conducted a study that ana-
lyzed the gut microbiota (GM) in DS subjects, considering the premature aging that occurs in the DS may be due 
to changes in GM. Deterioration of GM plays an important role in the aging of the general population as well68. 
This study revealed that DS GM is predominantly composed of Firmicutes, Actinobacteria and Bacteroidetes. The 
most represented families in DS GM were Ruminococcaceae (39%) and Clostridiales (9%)67. These bacteria are 
positively associated with TMAO levels60, so further analysis could be conducted to understand its association 
with DS.

Our study reveals that DS subjects present some alterations in metabolic pathways; however, more analyses are 
necessary to find out what is the main mechanism that determines this unbalanced concentration of some metab-
olites. The NMR approach used resulted extremely powerful in providing an efficient high-throughput untargeted 
picture of the metabolic fingerprint of the DS subjects. Nevertheless, the technique suffers sensitivity limitations. 
Only metabolites with concentrations ≥1 μM are measurable with confidence. Obtaining a confirmation of the 
proposed alteration in metabolic pathways would require targeted mass spectrometry analyses, which are beyond 
the scope of the present study. Possible evolutions might also be the determination of absolute rather than relative 
concentration of metabolites, the incorporation of a larger body of metabolome data in a metabolic network 
model69,70 and the study of the relationship between each metabolite and the protein or mRNA expression level 
of enzymes involved in its processing, e.g. generating quantitative, validated transcriptome maps providing DS/
normal tissue ratios such as those already available for normal human tissues71. In addition, while in this work 
we focused on the diagnosis of DS as the invariant phenotype to be studied at the biochemical level, further 
characterization of variability within our cohort of subjects at both the genetic level (e.g., single nucleotide poly-
morphisms - SNP - analysis) or phenotypic level (in particular, quantitative assessment of the grade of ID) could 
uncover fine relationships between DS features able to explain part of the variability observed in DS, for instance 
a more severe grade of disease in presence of a more clear deviation of the concentration of a specific metabolite.

Thinking of DS as a metabolic disease would result in a change of perspective, especially from the point of view 
of possible treatment. The focus must be shifted from what is upstream (gene excess or gene defect) to what is 
downstream (gene product). The “blocked” mechanism that determines ID severity and specific molecule protag-
onists of this complex mechanism might be identified, as occurred for other complex diseases: “Phenylketonuria, 
galactosemia, vitamine B6 dependant homocystinuria, to take few examples, can be properly handled and the 
children protected against mental deficiency. Who could believe that during the coming years no new progress 
will be achieved?”14.

Materials and Methods
Ethics Statement.  The study was approved by the independent Ethics Committee of the University Hospital 
St. Orsola-Malpighi Polyclinic, Bologna, Italy. Informed written consent was obtained from all participants. It was 
required for the patient, if over 18, or parents, to sign the informed consent for the collection of urine, blood and 
clinical data to participate in the study. All methods were performed in accordance with the Ethical Principles for 
Medical Research Involving Human Subjects of the Helsinki Declaration.

Case selection.  A total of 137 children/young adults were recruited to the study from February 3, 2014 to 
December 12, 2016, including 97 with DS and 40 healthy children/young adults that were siblings of the children 
with DS but with no evidence of abnormal karyotypes. Inclusion criteria for children with DS were diagnosis of 
Down syndrome with homogeneous or mosaic trisomy 21 and age > 2 years. Exclusion criteria for children with 
DS were distress at birth, severe prematurity (gestational age < 35 weeks) or severe neurologic disease at birth. 
The study has been proposed to all subjects consecutively admitted to the Day Hospital of the Neonatology Unit, 
Sant’Orsola-Malpighi Polyclinic, Bologna, in the context of the routine follow up provided for DS and matching 
the above-mentioned criteria.

Regarding the metabolomic analysis planned in the study, we were able to perform analysis and obtain results 
only in a subset of this group (Table 1) due to the following reasons: impossibility of obtaining an urine sample 
during the visit; impossibility of obtaining an adequate volume of blood during the collection; uncertainty about 
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the fasting state of the subject; a delayed treatment of the sample following its transfer from the Day Hospital to 
the University Laboratory (>2 hours); a macroscopic alteration of the blood/urine sample following centrifuga-
tion. Fasting before biological sample withdrawal was preferred, however if the patient had had breakfast before 
blood and/or urine collection, drinks and food assumed after midnight were recorded.

The metabolomic results were eventually obtained from a total of 67 children with DS (mean age = 11.3 
yrs, ± 7.0 Standard Deviation - SD) and 29 control subjects (CTRL, mean age = 16.6 yrs ± 7.8 SD). The sex distri-
bution of both DS and CTRL was similar (Table 1), as confirmed by lack of significant differences by Fisher’s test.

Plasma and Urine Sample Preparation.  Preanalytical treatment of blood and urine samples fol-
lowed standard operating procedures72,73. All procedures were conducted carefully and in sterility to avoid 
contaminations.

Blood samples were collected in EDTA-coated blood collection tubes and kept at room temperature. They 
were treated within two hours of blood draw. The sample was transferred to a new tube and centrifuged at 1250 g 
for 10 min. The plasma fraction was isolated and centrifuged for a second time at 800 g for 30 min and the super-
natant was transferred to new tubes without touching the pellet or the bottom of the tube and divided in aliquots 
of 300 µL. All plasma samples were rapidly stored in a −80 °C freezer and ready for subsequent analysis. The 
exclusion criteria of plasma samples from the subsequent analysis were blood sample treatment after two hours 
from the draw and evident contamination of plasma samples by residual erythrocytes at the end of the treatment.

Urine samples were collected in a sterile plastic cup with lid and kept refrigerated at + 4 °C if immediate 
processing was not possible. They were treated within two hours of collection. The sample was transferred to a 
new tube and centrifuged at 2500 g for 5 min at + 4 °C (refrigerated centrifuge). After centrifugation, filtration by 
0.20 µm cut-off filter was performed in order to avoid contamination of the metabolome with soluble molecules 
derived from cellular components. The filtered urine was transferred to sterile cryovials making 1.0 ml aliquots. 
All urine samples were rapidly stored in liquid nitrogen and ready for subsequent analysis.

The exclusion criteria of urine samples from the subsequent analysis were urine sample treatment two hours 
after the collection and formation of sandy sediment after centrifugation.

NMR sample preparation.  NMR samples were prepared according to standard procedures72.
Frozen samples were thawed at room temperature and shaken before use.
A total of 300 µL of each plasma sample was added to 300 µL of a phosphate sodium buffer (70 mM Na2HPO4; 

20% (v/v) 2H2O; 0.025% (v/v) NaN3; 0.8% (w/v) sodium trimethylsilyl [2,2,3,3–2H4]propionate (TSP) pH 7.4); 
a total of 750 μL of each urine sample was centrifuged at 14000 g for 5 min, and 630 μL of the supernatant was 
added to 70 μL of a potassium phosphate buffer (1.5 M K2HPO4, 100% (v/v) 2H2O, 10 mM sodium trimethylsilyl 
[2,2,3,3−2H4]propionate (TMSP) pH 7.4).

The mixtures were homogenized by vortexing for 30 s and a total of 600 μL of each mixture was transferred 
into a 5.00 mm NMR tube (Bruker BioSpin, Rheinstetten, Germany) for analysis.

NMR experiments.  The NMR analysis has been conducted at CERM, the Magnetic Resonance Center of the 
University of Florence, Sesto Fiorentino (FI), Italy. 1H-NMR spectra for all samples were acquired using a Bruker 
600 MHz spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor frequency and equipped with a 
5 mm PATXI 1H-13C-15N and 2H-decoupling probe including a z axis gradient coil, an automatic tuning-matching 
(ATM) and an automatic and refrigerate sample changer (SampleJet, Bruker BioSpin). A BTO 2000 thermocouple 
served for temperature stabilization at the level of approximately 0.1 K at the sample. Before measurement, sam-
ples were kept for 5 minutes inside the NMR probe head, for temperature equilibration at 300 K or 310 K in the 
case of urine or plasma samples, respectively.

Plasma is a heterogeneous mixture composed of thousands of metabolites as well as macromolecules like 
proteins and lipoproteins. Due to its intrinsic characteristic, for each plasma sample, three monodimensional 
1H NMR spectra were acquired with water peak suppression and different pulse sequences that allowed the 
selective observation of different molecular components: (i) a standard NOESY (Nuclear Overhauser Effect 
Spectroscopy)74 1Dpresat (noesygppr1d.comp; Bruker BioSpin) pulse sequence, using 32 scans, 98,304 data 
points, a spectral width of 18,028 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing time of 
0.1 s. This pulse sequence is designed to obtain a spectrum in which both signals of metabolites and high molec-
ular weight molecules (lipids and lipoproteins) are visible. (ii) a standard CPMG75 (cpmgpr1d.comp; Bruker 
BioSpin) pulse sequence, using 32 scans, 73,728 data points, a spectral width of 12,019 Hz and a relaxation delay 
of 4 s. This pulse sequence is designed for the selective observation of small molecule components in solutions 
containing macromolecules. (iii) a standard diffusion-edited76 (ledbgppr2s1d.comp; Bruker BioSpin) pulse 
sequence, using 32 scans, 98,304 data points, a spectral width of 18,028 Hz and a relaxation delay of 4 s. This pulse 
sequence is designed for the selective observation of macromolecule components in solutions containing small 
molecules; the resulting spectrum is generally made up only of the lipid, lipoprotein and protein signals.

Urine is a very complex biofluid but, unlike plasma, it is mainly composed of low molecular weight metabo-
lites. Thus, for each urine sample, only a monodimensional 1H NMR spectra was acquired with water peak sup-
pression and a standard NOESY74 pulse sequence using 32 scans, 98304 data points, a spectral width of 18028 Hz, 
an acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing time of 0.1 s.

Acquisition of plasma and urine samples lasted approximately 4 days of NMR time. Samples of DS subjects 
and controls were mixed and acquired in a totally random order to avoid any batch effects.

NMR spectral processing and analysis.  Free induction decays were multiplied by an exponential func-
tion equivalent to a 0.3 Hz line-broadening factor before applying Fourier transform. Transformed spectra were 
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automatically corrected for phase and baseline distortions and calibrated. All the urine and plasma spectra were 
calibrated to the reference signal of TMSP at δ 0.00 ppm, and to the glucose doubled at δ 5.24 ppm, respectively, 
using TopSpin 3.5 (Bruker BioSpin).

Each spectrum in the region 10.00–0.2 ppm was segmented into 0.02 ppm chemical shift bins, and the corre-
sponding spectral areas were integrated using the AMIX software (Bruker BioSpin). Binning is a means to reduce 
the number of total variables and to compensate for small shift in the signals, making the analyses more robust 
and reproducible.

For urine samples, normalization was applied on the obtained bins to minimize dilution effects caused, for 
example, by variation in fluid intake; the area of each bin was normalized using PQN, calculated with exclusion 
of the water region (4.40–5.00 ppm).

Unlike urine, blood-plasma is not affected by dilution effects and solute concentrations are tightly controlled; 
thus plasma spectra do not require normalization. Plasma spectra were directly analyzed by excluding the bins 
containing both EDTA signals (regions: 2.53–2.60, 2.68–2.73, 3.07–3.24, 3.58–3.64 ppm) and water (region: 
4.40–5.00 ppm).

No scaling of the binned data was performed; the data are only mean-centered before multivariate statistical 
analyses.

Statistical analysis.  Various kinds of multivariate statistical techniques were applied on the obtained bins 
using R 3.0.2 in house scripts.

Unsupervised Principal Component Analysis (PCA) was used to obtain a preliminary outlook of the data (vis-
ualization in a reduced space, cluster detection, screening for outliers, presence of batch effects or instrumental 
bias).

Partial Least Squares (PLS) was employed to perform supervised data reduction and classification between 
samples from healthy and diseased volunteers. Canonical Analysis (CA) was used in combination with PLS to 
increase supervised data reduction and classification.

The global accuracy for classification was assessed by means of a Monte Carlo validation scheme. Accordingly, 
each dataset was randomly divided into a training set (90% of the data) and a test set (10% of the data). The 
training set was used to build the model, whereas the test set was used to validate its discriminant and predictive 
power; this operation was repeated 200 times. For each model, the resultant confusion matrix was reported and 
its discrimination accuracy, specificity and sensitivity were estimated according to standard definitions. Their 
confidence intervals (95%) are provided in the Figures’ legends. Each classification model was also validated using 
permutation test; the permutation was repeated 100 times and the resulting p-value was calculated.

The metabolites, whose peaks in the spectra were well defined and resolved, were assigned (Supplementary 
Tables S1 and S3) and their levels analyzed. The assignment procedure was made up using an internal NMR 
spectral library of pure organic compounds, public databases such as the Human Metabolome Database77, stored 
reference NMR spectra of metabolites, spiking NMR experiments and using literature data78,79. Matching between 
new NMR data and databases was performed using the AMIX software.

Before univariate analysis, each metabolite was aligned to a reference value of chemical shift, obtaining a 
perfect alignment among all the spectra. The relative concentrations of the various metabolites were calculated by 
integrating the corresponding signals in defined spectral range80, using a home-made tool for signal deconvolu-
tion. Not assigned signals were labeled as unknown.

The nonparametric Wilcoxon-Mann-Whitney test was used for the determination of the meaningful metabo-
lites; a p-value < 0.05 was considered statistically significant. In order to reduce false discoveries, False Discovery 
Rate correction (FDR) was then applied using the Benjamini and Hochberg method81 and the resulting p-values 
are reported as pFDR.

The effect size, using the Cliff ’s delta (Cd) formulation82, was also calculated to aid in the identification of 
the meaningful signals giving an estimation of the magnitude of the separation between the different groups. 
The magnitude is assessed using the thresholds provided in Romano and Coll.83, i.e. |Cd| < 0.147 “negligible”, 
|Cd| < 0.33 “small”, |Cd| < 0.474 “medium”, otherwise “large”.

Univariate and multivariate logistic regression models were applied to the most significant metabolites to 
assess the presence of confounding factors such as sex and age of the children and the respective ODD ratios and 
p-values were calculated.

Genomic Analysis.  The KEGG pathway database (http://www.genome.jp/kegg/pathway.html) has been used 
to identify key enzymes upstream or downstream of the metabolite with an altered concentration in DS subjects. 
NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene) has been used to search for the chromosomal location 
of these enzymes in order to verify a specific role of Hsa21.

Literature Analysis.  The Human Metabolome Database (http://www.hmdb.ca/) and PubMed database 
(https://www.ncbi.nlm.nih.gov/pubmed/) have been used to search for previous descriptions in human plasma 
and urine of the metabolites with an altered concentration in DS.

Data availability.  The datasets generated and analyzed during the current study are made available as 
Supplementary Datasets S1 (plasma data) and S2 (urine data).
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